
 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
2-8-2010 

2. REPORT TYPE
Final report

3. DATES COVERED (From - To)
12-2006 to 12-2009

4. TITLE AND SUBTITLE 
 

5a. CONTRACT NUMBER 
 

Probability Based Integration of Structural Health Monitoring 
into the aging aircraft sustainment program

5b. GRANT NUMBER 
FA9550-07-1-0018 

 
 

5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
 

5d. PROJECT NUMBER 
 

Raphael T. Haftka, Fuh-Gwo Yuan and Nam-Ho Kim 
 

5e. TASK NUMBER 
 

 
 

5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

University of Florida 
Mechanical and Aerospace 
Engineering 
231 Aerospace Building 
Gainesville  FL  32611-6250 

 
 
 
 

 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
  
AFOSR
875 N  Randolph St                                                                                                                                             11. SPONSOR/MONITOR’S REPORT 
        NUMBER(S) 
Arlington, VA 22203                                              AFRL-OSR-VA-TR-2011-0026
  
12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
Approved for Public Release; distribution is unlimited 
 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
The research focused on improvements in diagnosis and prognosis of crack detection through extensive use of probabilistic 
techniques. A unique feature of the research is that it identifies the material properties relevant to damage propagation at the 
same time that it performs diagnosis and prognosis. As such, it has the potential of turning aircraft into flying fatigue 
laboratories and contributing to substantial improvements in the accuracy of aircraft digital twins. Specific accomplishments are 
include the development of frequency-wave-number migration technique, image-segmentation technique, use of Bayesian 
techniques for combining sensors and actuators, and for narrowing down uncertainty in material properties that govern crack 
propagation. Together, the research is expected to substantially advance research into making structural health monitoring 
practical for Air Force aging planes. 
 

15. SUBJECT TERMS 
Structural health monitoring, Bayesian techniques, image processing. 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON
 

a. REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE
Unclassified UL  

19b. TELEPHONE NUMBER (include area 
code) 

     
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18 

FINAL REPORT 



 

 

Title: Probability-Based Integration of Structural Health Monitoring into the Aging Aircraft Sustainment Program 
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Investigator: Nam-Ho Kim, University of Florida. 
Contract/Grant #: FA9550-07-1-0018 
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Overall view: The research focused on improvements in diagnosis and prognosis of crack detection through extensive 
use of probabilistic techniques. A unique feature of the research is that it identifies the material properties relevant to 
damage propagation at the same time that it performs diagnosis and prognosis. As such, it has the potential of turning 
aircraft into flying fatigue laboratories and contributing to substantial improvements in the accuracy of aircraft digital twins. 
Specific accomplishments are listed below. Item 1 was needed to improve accuracy, item 2 to improve image sharpness, 
and item 3 to take full advantage of multiple pairs of sensors of actuators. Together they provide more accurate diagnosis. 
Item 4 is the realization of the flying fatigue laboratory concept, and item 5 provides an efficient method that extracts 
maximum accuracy in prognosis from the narrowed down material properties. Item 6, which provides experimental 
investigation of our approach, and item 7, which looks to improve diagnosis based on prognosis, were started under the 
project  and completed later. 
Together, the research is expected to substantially advance research into making structural health monitoring practical for 
Air Force aging planes. 

Specific Accomplishments:  
1. Developed a frequency-wave number (f-k) migration technique for imaging the damage in a plate with the 

through-the-thickness crack. 

 
                         (a)                                                       (b) 

Figure 1(a) Geometry of f-k migration simulation and (b) damage image with a single crack 
 

2. Developed an image segmentation technique, whose framework is shown as in Figure 2, for quantifying the 
damage size in damage image, as shown in Figure 3, using Markov Random Field and Bayesian statistics.   

 
Figure 2. Framework of Bayesian based image segmentation. 

 



 

 

 
                                                         (a)                                                                    (b) 

Figure 3 (a) An image by f-k migration and (b) the Bayesian based segmentation 

 

The developed damage segmentation is tested at different locations in the plate corresponding to the fixed sensor 
array. The estimated damage sizes and damage locations by Bayesian based image segmentation method are 
listed in Table 1.  

 
Table 1 Center location and damage size for multi-location simulation (Unit: mm) 

Crack  
Index 

True values Estimated values 
Size  Location Size  Location 

d1 20 (0,80) 27.5 (0,80)
d2 20 (60,80) 25 (60,80)
d3 20 (120,80) 22.5 (117.5,80)
d4 20 (0,110) 27.5 (0,110)
d5 20 (60,110) 27.5 (57.5,110)
d6 20 (120,110) 22.5 (117.5,107.5)
d7 20 (0,140) 27.5 (0,140)
d8 20 (60,140) 25 (57.5,137.5)
d9 20 (120,140) 22.5 (117.5,137.5)
d10 20 (0,170) 27.5 (0,170)
d11 20 (60,170) 22.5 (57.5,167.5)
d12 20 (120,170) 22.5 (117.5,167.5)

 

3. Created a 3-step procedure, as shown in Figure 3, to extract distribution of damage size from f-k migration 
imaging results, and introduced gradient prior to achieve a probability density function of damage size with high 
confidence. The distribution from the 3-step procedure and the ones enhanced by gradient prior are given in 
Figure 5. Table 2 shows the estimation of most possible damage size, the average damage size in the images 
and their standard deviation. 

 

Figure 4 3-step procedure proposed to extract PDF of damage size. 
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(a)                                                                           (b) 

Figure5 (a) Extracted PDFs of damage size by 3-step procedure and (b)distribution improved by gradient prior. 

 

Table 2. Statistical properties of distribution with gradient prior (Unit: mm). 

True Max PDF Mean STD 

20 21.8 21.9 3.06 

22.88 23.6 23.9 3.28 

26.68 27.8 27.8 3.84 

31.87 32.8 33.0 4.23 

39.39 36.8 36.9 4.68 

51.2 51.0 51.0 4.92 

72.19 72.1 72.1 5.02 

 

 
4. Develop Bayesian updating to progressively narrow the uncertainty in damage growth parameters in spite of noise 
and bias in sensor measurements. Figure 6(a) 
 
The objective of this task is to use SHM data to predict the remaining useful life (RUL) using physics-based prognosis techniques, 
which incorporate the measured data into a damage growth model to predict the future behavior of the damage. Although this 
prediction shows acceptable estimate in the laboratory environment, it becomes challenge in practice due to uncertainty in SHM 
measurement process. Sources of uncertainty are from initial state estimation, current state estimation, failure threshold, sensor 
measurement, future load, future environment and models. This task focuses on uncertainties in sensor data, which can be classified 
into two categories: systematic departure due to bias, and random variability due to noise. The former is caused by calibration error, 
sensor location and device error, while the latter is caused by measurement environment. The major challenge in SHM-based 
prognosis is how to accurately predict the damage growth when the measured data include both noise and bias. 
 
In physics-based prognosis, the damage grows according to the parameters in the physics model. The generic materials often show 
wide distribution of these parameters due to variability in manufacturing process and aging. However, the panel that is equipped with 
SHM systems may have specific damage growth parameters. The main objective of this task is to demonstrate the reduction in 
uncertainty of these parameters using an abundance of SHM data, although they include noise and bias. In other words, numerous data 
obtained from SHM can be used to characterize damage growth behaviors of a specific structure. A statistical approach using 
Bayesian inference is employed to progressively improve the accuracy of predicting damage growth parameters under noise and bias 
of sensor measurements. 
 
The proposed approach is demonstrated using a through-the-thickness crack in an aircraft fuselage panel which grows through cycles 
of pressurization. A simple Paris model with two parameters is utilized. However, more advanced models can also be used, which 
usually comes with more parameters. Using this simple model, the goal is to demonstrate that noisy SHM data can be used to identify 
the damage growth parameters of the monitored panel. This process can be viewed as turning every aircraft into a flying fatigue 
laboratory. Reducing uncertainty in damage growth parameters can reduce in turn the uncertainty in predicting RUL; i.e., prognosis. 
Improved knowledge of RUL can have practical consequences such as increased time between visual inspections, or a reduction in 
hardware testing when SHM is combined with manual inspection. 
 



 

 

Since there is real aircraft that equipped with SHM system, synthetic measurement data are used in this study. First, it is assumed that 
the panel has specific damage growth parameters (mtrue = 3.8 and Ctrue = 1.5E-10) for the Paris model. It is also assumed that the 
damage assessment using SHM is performed every 100 flights. In practice, this can be done every flight. Then the ‘true’ damage 
grows as a function of the number of flights following the Paris model with the true values of parameters. At each assessment cycle, 
random noise and deterministic bias in the SHM process are added to the true damage size, which is then called the ‘measured’ 
damage size. These measured damage sizes are used to estimate the damage growth parameters (m and C). The accuracy of estimate 
can be evaluated by comparing them with the true ones (mtrue and Ctrue). 
 
As a first step, it is assumed that Ctrue is known and only m is unknown. This assumption is taken to show how the Bayesian process 
effectively identifies damage growth parameters. Figure 6(a) shows a case when bias is equal to zero and noise is uniformly 
distributed between -1mm and 1mm. The initial distribution of m starts from a uniform distribution between 3.3 and 4.3, which was 
estimated from test article. It can be found that the distribution of m was quickly narrowed and converges to the true value. It was 
observed that the initial convergence rate is slow, but gradually accelerated as the size of damage increases. This is expected because 
as damage grows quickly, the ratio between noise and signal becomes smaller. Table 1 summarized the identified damage growth 
parameter m under various combinations of noise and bias. It can be observed that a large noise can cause a large uncertainty in the 
parameter, while the positive bias can cause underestimation of the parameters. As a whole, however, the Bayesian process identifies 
the damage growth parameter fairly accurate with a very small level of uncertainty. Similar results have also been obtained for the 
case when the parameter C is unknown. 
 

Table 1: Statistical characteristics of final PDF of m with different combinations bias/noise 
 Effect of noise Effect of bias 
Bias, noise (mm) b = 0, V = 1 b = 0, V = 3 b = -2, V = 1 b = +2, V = 1 
Max. likelihood 3.80 3.80 3.82 3.78 
Mean 3.80 3.80 3.82 3.78 
Standard deviation 0.01 0.04 0.01 0.01 

 
Once uncertainty in damage growth parameters are identified, they can be used to predict the remaining useful life (RUL), which is 
the life before the damage grows to the critical damage size. There are several uncertainties involved in predicting RUL: the current 
measured damage size, damage growth parameters, and loadings (i.e., pressure differential). Since the uncertainty in damage growth 
parameters in early cycles is large, the uncertainty in RUL will also be large. However, this uncertainty is expected to be reduced 
according to that of damage growth parameters. In order to have a safe prediction of RUL, the 5th percentile RUL is used as a 
conservative estimate of RUL. Since synthetic data are used by adding random noise, the result may vary with different sets of data. 
Thus, the above process is repeated with 100 sets of data, and 68% confidence intervals are plotted. Figure 3(b) shows these 
conservative intervals of RUL. In order to compare the predicted RUL with true one, the true RUL is also plotted in the figure. Note 
that initially the difference between the true and predicted RULs is significant because uncertainty is large at an early stage. However, 
the predicted RUL converges to the true one from the safe side as more numbers of updates are performed. In addition, the variability 
of estimated RUL is also gradually reduced. Thus, it can be concluded that the proposed Bayesian inference can estimate panel-
specific damage growth parameters as well as the RUL while maintaining conservative. 
 
5. Developed a probabilistic model for damage size distribution from the damage imaging and estimated the distribution 
of remaining useful life (RUL) using a combination of Bayesian updating and least squares fitting of damage growth 
parameters. 
In the previous research, the Bayesian method has been used for progressively reducing the uncertainty in structure-specific damage 
growth parameters in spite of noise and bias in sensor measurements. However, Bayesian updating is computationally intensive and 
may not be feasible to use with an extremely large number of measurements. Least-squares method, on the other hand, is efficient, but 
does not provide good statistical information on the uncertainty in their estimates and in RUL estimates. In this research, we propose 
combining the two approaches by using the least-squares approach to filter data for the Bayesian updating.  
 
Least square fit is the easiest and most commonly used way of identifying model parameters by minimizing the difference between 
measured data and predicted data from the physics model. In our application, the Paris model is used with the following unknown 
parameters: initial crack size, damage growth parameter, and bias. The parameter C is still assumed to be known in order to compare 
with the results in the previous research. Although the Bayesian method is performed at every 100 cycles, the least-square-fit is 
performed at every cycle because the accuracy of fitting is better with more data. Similar to the Bayesian method, the identified 
parameters depend on synthetic measurement data. Thus, 1,000 sets of measurement data are produced by adding deterministic bias 
and random noise to the true crack sizes. Thus, at every measurement cycle, there exist 1,000 identified parameters, from which the 
distribution of parameter is estimated. By following the same procedure with the Bayesian method, the distribution of conservative 
RUL is plotted in Figure 3(b). It can be observed that the least-square method yields narrower distribution of RUL, but the distribution 
of 5th percentile can be unconservative compare to the true RUL.  
 
Both Bayesian updating and least square fit present advantages and limitations, but they appear to be complementary. Least square fit 
ability to identify the bias and reduce the noise makes it a useful tool to process the data in order to identify the distribution of RUL 
using Bayesian updating. In order to combine the advantages of the two methods, we propose to process information collected at every 
cycle by least square fit in order to reduce the noise, and identify the bias. The filtered data is then used in Bayesian updating in order 



 

 

to narrow down the distribution of m and obtain a more accurate prognosis. It was observed that the proposed method rapidly 
converges to the accurate damage parameters. Fairly accurate damage parameters can be obtained also with measurement errors of 
5mm. Using the identified damage parameters, it is shown that the 95% conservative RUL converges to the true RUL from the 
conservative side (See Figure 3(b)). 
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                                      (a)           (b) 
Figure 6 (a) A very wide initial distribution of the exponent in Paris law for crack growth is successively narrowed as crack 

measurements accumulate(b) By combining Bayesian updating and least squares identification of crack growth, the 
 
6. Experimental Study on Identifying Cracks of Increasing Size using Ultrasonic Excitation 
The objective of this task is to explore the relationship between the sensor signal amplitude and crack size through experiments and 
simulation for estimating the size. The equally-spaced sensor arrays are attached to the plate as shown in Figure 1(c). The two sets of 
linear arrays are used to study the effect of crack location. When a PZT disc is used as an actuator, all other PZT discs in the array are 
used as sensors. 

   
(a)      (b)        (c) 

Figure 7. Layout of actuators and sensors (a) One set of sensors for simulation and experiment (b) Two sensor arrays 
attached to the plate and their corresponding domain (c) Aluminum 6061 test plate – pristine state. Three arrays of 
sensors are attached to the plate, but the vertical array is not employed in this research.  
 
Cracks are machined into an aluminum plate and measurements are carried out with ultrasound excitation using piezoelectric 
transducer arrays that alternate their role as actuators or sensors. Initially, a hole of 2.5mm diameter is drilled in the plate, and it is 
gradually machined to a crack with a size up to 50mm.  Signal amplitude is measured from the sensor arrays.  
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(a)                  (b) 

Figure 8 Signal amplitude variation (maximum peak-to-peak amplitude). The excitation frequencies are (a) 110 kHz and 
(b) 150kHz, and the signal amplitude is normalized using the signal at crack size 25 mm as the reference.  

 
Figure 8 shows the result of this experiment. The maximum received signal amplitude is found to vary linearly with size from 
simulation and this agrees with measurements with crack size up to 30 mm. With different excitation frequency, the comparison 
between simulation and experiments shows substantial difference in terms of size estimation capability. Generally higher frequencies 
are able to detect smaller cracks, but also are sensitive to the shape of the crack tips so the larger size is often misinterpreted when 
high frequency excitation is used. 
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Figure 9. Scattered signal amplitude variation for cracks growing at a different location excited by 110 kHz ultrasonic 
toneburst. Signal amplitude comparison with result shown in Figure 11, simulation and experiment. 
 
We next investigated the effect of the relative location of the crack and the sensor array. The crack is located at (-90mm, -110mm) 
from sensor 4 of array 1, while it is located at (-100mm, -140mm) from sensor 4 of array 2 (Figure 9b). The behavior of maximum 
signal amplitude is predicted by simulation, and obtained from experiment. By using sensor array 2, we were able to obtain the signal 
amplitude for crack position 2, and compared it with the simulation results in Figure 9b. Since the distance from the sensor array is 
larger, the slope of peak-to-peak amplitude to the crack size is smaller compared to the previous experiment, but slightly larger than 
expected from the simulation.  
 
This work utilizes signal amplitude to measure crack sizes. We have shown that the increasing signal amplitude can indicate crack 
propagation. This approach may provide a useful inference about a small crack, whose size is difficult to measure with other 
techniques. 
 
7. Improving Diagnosis from Past Prognosis 
In the previous research, the increment of the crack size can be found by analyzing sensor signals. Considering the nature of noisy 
environment condition we have to face with an actual implementation of SHM system, this work aims for further accuracy on the 
diagnosis using past prognosis information. Unlike manual inspection, SHM can take frequent measurements and trace crack growth. 
By taking advantage of this fact, higher accuracy about current crack size can be achieved. First, using the previous SHM 
measurements and the crack propagation model, we predict statistical distribution of crack sizes at the next SHM inspection cycle. 
Then, this predicted distribution is combined with the SHM measurement at the next cycle by using the Bayesian approach for more 
precise measurement (Figure 10). That is, the propagated distribution from the previous inspection is used as a prior and the variability 
at the current inspection is used to build the likelihood function.  
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(a)             (b) 

Figure 10. Simulation procedure (a) Measurement probability distribution and predicted probability distribution of crack 
size after 2500 cycles (b) Predicted distribution is used as a prior for the next inspection. Posterior distribution is 
calculated by combining current inspection result and the prior distribution. 
 
There are many approaches for predicting crack propagation from current measurements. To examine the effect of the prognosis 
model, we selected four cases of possible prognosis. First, we select a case of perfect prognosis where we know the exact crack 
propagation model with accurate parameters. Second case is when our prognosis model is accurate, but the parameters are uncertain. 
The third case is the same as the second case, but we use a least square fit instead of Monte Carlo simulation. Finally, we model a case 
where we have a simplistic failure prediction model, not based on any physics, but fitting a quartic polynomial to past measurements 
and extrapolating it. The comparison of accuracy is in Table 2. 
 

Table 2: Comparison of accuracy with 10000 MCS 
 Estimated value  

(Mode, most probable value) 
Standard deviation of 

estimation 
Single inspection 50.8 mm 5.08 mm 
1. Perfect prognosis 50.8 mm 0.98 mm 
2. With uncertainty of parameters 50.8 mm 1.48 mm 
3. Least square fit of Paris law 
prognosis 

50.6 mm 1.55 mm 

4. Data-driven (quartic polynomial) 
Least squares 

50.5 mm 2.72 mm 
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